If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=5(t)^2
We move all terms to the left:
100-(5(t)^2)=0
determiningTheFunctionDomain -5t^2+100=0
a = -5; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-5)·100
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{5}}{2*-5}=\frac{0-20\sqrt{5}}{-10} =-\frac{20\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{5}}{2*-5}=\frac{0+20\sqrt{5}}{-10} =\frac{20\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-1} $
| 6n^2-31n=-5 | | 1/3s=-5 | | X/2+2x/3=4 | | 6x-14 = 28 | | 26y^2-8y-64=0 | | 9/10x-2/5=8 | | 2y=Y^2 | | 7x-3-2x=12 | | 8,35=v0+9,82*2 | | 3-m/7=9 | | y/6+1=4 | | 6+12=5x | | 3−m7=9 | | 6x+13=109 | | -18y+3=10y+19–20y | | 9x+2=8x+11 | | -2.5+c=0.89 | | 4x+(-4x)+1+3=0 | | x(x)+27x-182=0 | | -14x-5=-159 | | 1.5*x^2+5*x+1.5=0 | | 3-2(b-2)=2-2b | | 6=a/7-5 | | 6.9x+17=99.8 | | -f/7-8=2 | | 3(2x–1)+4x=13 | | 15+5x;x=3 | | 4x/3=8+x | | -2k+15=45 | | 6×+5=7x+2 | | 14x-12=156 | | 4x^2−11x−20=0 |